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ABSTRACT Temporal graph networks are powerful tools for solving the cold-start problem in sequential
recommender systems. However, graph models are still susceptible to feedback loops and data distribution
shifts. The paper proposes a simple yet efficient graph-based exploration method for the mitigation of the
aforementioned issues. It adopts the counter-based state exploration from reinforcement learning to the
bipartite graph domain. We suggest a method that biases model predictions using Rooted PageRank towards
locally unexplored items. The method shows competitive quality on the popular recommender systems
benchmarks. We, also, provide an extensive qualitative analysis of experiment results and recommendations
for the use of our method in production applications.

INDEX TERMS exploration, fine-tuning, graph neural networks, gnn, graphs, interactive recommender
systems, intrinsic motivation, online adaptation, pretraining, self-supervised, recommender systems, recsys

I. INTRODUCTION
Nowadays, recommender systems drive a lot of businesses
from e-commerce to social media [1], [2]. Such models allow
to improve user experience by reducing users’ time spent
finding options most relevant to them. Classic models aim
to find such options based on prior user interactions. How-
ever, in most cases recommender models operate in a very
dynamic environment [3]: people create a lot of new content,
clothes are anchored to the season, and preferred music
depends on mood and situation. Thus, historical interactions
could be rendered irrelevant in the present.

Moreover, recommender systems are interactive models.
They affect user behavior because they restrict the visible
set of items. On the other hand, the interactive nature of
models allows us to receive almost immediate feedback about
items that may possibly fit the changed interests of the user,
and adapt to these changes in an online fashion. Multi-
armed and contextual bandits and reinforcement learning
(RL) based approaches were applied to solve this issue [4].
Both of them use exploration strategies to propose unseen or
uncertain states. The state of the recommender system can be
represented as a set of items previously interacted with by a
user, or as a user-item interaction graph for all users at the
given moment.

Recently, graph neural networks (GNN) have been adopted
to build recommender systems [5]. In comparison to the
classic matrix factorization methods, they consider high-
order proximity between users and items [6]. Furthermore,
modern graph-based methods can work with the user, item
and context information [7], [8] and temporal information
[9], [10]. Such models show high performance for user-item
interaction graphs even for previously unseen nodes [11].

The exploration-exploitation trade-off is well-studied for
classic analytical models like multi-armed and contextual
bandits. Nevertheless, such strategies are hard to apply to an
arbitrary recommender model [4]. Therefore, the goal of this
paper is to develop a new exploration technique specifically
for graph-based recommender systems.

The main contribution of the paper is the novel exploration
strategy that is based on the ideas of the Rooted PageRank
[12]. It estimates the local item popularity and drives the
model to recommend the most uncertain items at the moment.
The proposed method shows competitive quality on the prob-
lem of online model adaptation.

The paper is structured as follows. Firstly, we explain
background knowledge. Then, we describe the proposed
methods in detail. Next, the experiment methodology is
presented. Finally, we discuss obtained results and conclude
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FIGURE 1: Difference between classic offline models and models with online adaptation. Similar color represents similar items.
Classic offline models (the top row) require full retraining to adapt to changes in user behavior. Moreover, such retraining could
lead to concentration on a specific topic. On the other hand, online models (the bottom row) benefit from exploration with faster
adaptation to any behavioral changes and provide more diverse recommendations.

our findings.

II. RELATED WORK
The section describes the previous experience in the relevant
fields for the study. We start by explaining modern methods
for exploration to handle data distribution shifts and feedback
loop problems. Next, we describe the temporal graph net-
works as an efficient method for sequential recommendations
and cold-start problems.

A. EXPLORATION TECHNIQUES
The exploration problem can be considered under two ma-
jor perspectives: optimism under uncertainty and intrinsic
motivation. The general idea of the first group of methods
is to estimate distributions of predictions and discriminate
between high-mean (good performance) and high-variation
(lack of data). The second group applies self-supervised
learning to bias the model towards unexplored regions.

A classic approach to the problem of exploration is the
multi-armed bandit model. One of the simplest strategies is
ϵ-greedy [13]. It exploits model prediction with decreasing
probability 1 − ϵ and chooses items uniformly at random
with probability ϵ. Due to its simplicity, this model can be
used with an arbitrary estimator. More complex methods
like contextual bandits are usually based on the LinUCB
[13], [14]. It is hard to apply to an arbitrary model because
it requires an analytical solution of an underline estimator.
Also, it learns different models for different arms which leads
to high computational complexity.

The application of optimism under uncertainty requires the
estimation of outcome distribution. One of the most common
methods for this task is Variational Autoencoders (VAE) [15],

[16]. It learns the mean and variance of input in some latent
space. We can use it to sample vectors for users and items. To
reduce the complexity of the problem, we can limit it to just
the output of the encoding of state.

Intrinsic motivation is a popular technique from reinforce-
ment learning [4], [17]. The general idea is to use some
additional intrinsic reward for our model to add exploration.
One of the main approaches is to estimate the novelty of
the state, for example, by counting the number of visits to
it [17]. The extension of such an approach is the random
network distillation strategy [18]. Instead of counting it uses
the idea of the inability to properly predict the value of some
complex function in unfamiliar regions. This idea could be
also applied to the direct algorithm task. If it has a high
prediction error of the next state, then it is not sufficiently
explored [19]. Another group of methods preserve the buffer
of previous actions and states to estimate novelty relative to
them [20]–[22].

B. DYNAMIC GRAPH REPRESENTATION LEARNING

Dynamic graphs can be split into two general groups:
discrete-time dynamic graphs (DTDG) and continuous-time
dynamic graphs (CTDG) [23]. The first group of methods
works with a series of discrete snapshots of a full graph over
the fixed timedelta. The difference between two consecutive
graphs is defined by the set of all added or removed edges
and nodes from the previous graph between two discrete
timesteps. The second group of methods treat graph update
events (node or edge addition or removal) continuously. This
work concentrates on the second type of graph due to its
ability to catch each new user-item interaction event in an
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online fashion.
Most dynamic graph embedding methods can be gener-

alized by the TGN framework [11]. It introduces a flexible
set of modules: memory and memory update procedures,
message function, message aggregator and final embedding
layer. The main difference between methods lies in memory
update procedures and embedding layers. TGAT [24] use
no memory and apply an attention mechanism to aggre-
gate node neighborhood. JODIE [9] uses time weighting of
memory state to receive embedding. CAW [25] employs an
anonymization technique in order to learn final node and
edge embeddings, and does not include a memory module. A
method described in [26] takes the memory and embedding
layer from the original TGN and augments it with CAW
vectors. APAN [27] extends the memory to preserve all
events from k-hop neighborhood of a vertex.

C. GRAPH NEURAL NETWORKS FOR RECOMMENDER
SYSTEMS

There are a lot of applications of GNNs for specific domains
in recommender systems like knowledge-aware [28], [29]
or social recommendations [30]–[32]. However, our work is
concentrated on a classic sequential formulation of recom-
mender systems. In this case, data is usually represented as a
user-item interaction graph [33]–[36]. Neural Graph Collab-
orative Filtering [6] enhances Neural Collaborative Filtering
[37] applying GCN [38] to preserve the high-order proximity.
LightGCN [7] removes the non-linearities between the GCN
layers to ease computational complexity and improve scala-
bility. PinSAGE [8] proposes importance sampling for items
to reduce the number of node encodings in aggregations.
Additionally, they utilize the Personalized PageRank [12] to
sample the hard negative examples. MCCF [39] apply the
attention mechanism to aggregate the neighbors’ informa-
tion. XSimGCL [40] propose simple augmentation strategies
for graph-based recommendations to improve overall model
quality. Some works [41]–[43] preserve temporal structure
by building graph differently. They define nodes by items and
connect them if a consecutive positive event was performed.
Authors of [44], [45] propose to build a hyper-graph of
user sessions to account for inter-session correlations. The
approach described in [46] applies the methodology of graph
embedding to continuous-time dynamic graphs described
above in order to solve the recommender systems problem.

III. MODEL
The general idea of the paper is to utilize a user-item in-
teraction graph structure for exploration purposes. In this
section, we will describe how the graph is constructed, and
how it is encoded to provide recommendations and establish
exploration. The code of model and experiment pipeline is
available on Github 1.

1https://github.com/mkiseljov/graph-based-exploration-access

A. GRAPH CONSTRUCTION
Following the TGN, we treat the graph updates continuously
considering each event independently. These events have the
following information:

• Source node (user)
• Destination node (item)
• Node (both user and item) features
• Edge features (if presented)
• Timestamp
The event defines the addition of edge between nodes. So,

it is important to carefully design how such events occur.
Our goal is to build an interactive recommender system
that is able to adapt to user decisions. However, the item
recommendations from the novel model may not ideally
fit the historically shown items. So, we propose to use for
learning not all historical edges to the graph but only edges
with positive feedback from users during our simulation.

We can summarize the process of graph construction dur-
ing the experiments in the following steps:

1) Initialize empty graph
2) Recommend some items to the user
3) Add edges to the graph if the user positively reacts

(click, like, purchase and so on) to the item.
4) Repeat steps 2-3 while historical data is presented

B. NODE ENCODER
To encode nodes, we use a modified TGN model because
it shows high performance in temporal link prediction task
and generalizes a lot of other temporal graph embedding
methods. The TGN model can be decomposed into two parts.
The first part is about how it tracks the memory of the node:
it receives the batch of messages (node pairs), encodes it
(with identity by default), preserves only the last message
for each node and updates the memory using GRU. The
second part is how TGN predicts novel links. It takes a
pair of nodes and builds embeddings for each one based
on the current node features, its memory and time from the
last message. Then, it updates the embedding with graph-
layer (aggregation of embeddings over node neighbourhood).
Finally, received node embeddings are concatenated and edge
existence probability is calculated using a fully-connected
network.

The first modification of the TGN is that we apply graph
layer only to the user nodes. The TGN model aims to encode
a small number of node pairs to perform binary classification
tasks. However, in the recommender systems, we need to
score a large number of items. So, in the case of direct
application of TGN, we will need to calculate the graph
embeddings for all items online. This requires too much time
and computational resources.

The second modification is the replacement of the binary
classification output layer with the top-k items recommen-
dation. We find top-k items balancing the exploration and
exploitation scores. The exploitation score is calculated as
a simple dot product between node embeddings. The ex-
ploration score is described in the subsection below. This
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modification is essential to fit the recommender systems’
requirements.

C. EXPLORATION MODULE
Representation of recommender systems as a graph problem
gives us a convenient view of the user-item interactions. We
consider that k-hop neighborhood depicts a set of user inter-
ests. In these terms, we can state exploration as a problem of
reaching items outside this set.

The exploration strategy is inspired by Rooted PageRank
(RPR) [12] and its application to hard negative sampling in
the PinSAGE model [8]. Rooted PageRank can be considered
as a similarity measure between root and other nodes. The
authors of PinSAGE propose to use moderately similar nodes
as hard negative examples. Such nodes are close enough to
the original root but not selected by the user. We employ this
idea to perform exploration.

The RPR selects the root node (user node in our case) and
samples random walk from it until restart from the root with
predefined probability. Then, it calculates node occurrences.
However, we want to preserve the causality in the user
actions. So, we sample temporal random walks instead of
ordinary ones. Also, recommender graphs usually are power-
law graphs and, therefore, dense. Thus, we need to sample
only a few nodes via random walks, otherwise, the collected
statistics will be close to the uniform distribution. Overall,
the proposed exploration strategy can be summarized in the
following steps:

1) Select the user as a root node
2) Sample several (100) fixed size (length 3) temporal

random walks starting from the root node
3) Count the occurrence
4) Bias TGN predictions towards nodes with the smallest

occurrence count

D. TRAINING OBJECTIVE
Our goal is to validate how the model and exploration
strategies work in interactive environments. However, real
data is already biased towards some recommender strategies.
Also, historically shown items may not match the model
proposition to the user. To overcome these issues we propose
to utilize causal inference techniques [47].

We employ two counterfactual evaluation methods aimed
to solve the mentioned problems with historical data. Firstly,
we utilize the Replay [48] method. The general idea of it
is to skip the observations where recommendations do not
intersect with the historical slate for the given user. This is
essential because if we penalize the model for the wrong
prediction since it was not presented in historical data, then
we will converge to the data collection strategy, e.g. previous
recommendation system. However, this method works only
for data sampled uniformly at random. Inverse probability
weighting (IPW) [49] reduce estimate bias by making obser-
vation distribution in the treatment group similar to the gen-
eral sample. Basically, it resamples observations according to
the inverse probability of its observation. Such a procedure

flattens occurrence distribution to the uniform. To provide
unbiased estimates we fuse both methods for counterfactual
evaluation. We use it to weight binary cross-entropy (BCE)
loss between the observations.

1) Select user-item interactions batch by the time
2) Predict top-k items following the exploration and ex-

ploitation strategies for the users in the batch
3) Select the items from predictions that were historically

shown (any event positive or negative) to the user
4) Calculate BCE loss for the selected user-item pair

(omit other pairs from loss calculation)
5) Weight the user-item pair loss with IPW
6) Calculate weighted by IPW average of the user-item

pairs’ losses
7) Propagate loss

E. CONNECTION TO THE EXISTING METHODS
The proposed exploration method is most closely related to
the buffer-based intrinsic motivation strategies. Such meth-
ods follow the idea of novelty estimation but with respect
to the recent states in the buffer. [20] gives a reward if the
agent is far away from states in the buffer. [21] trains the
discriminator between current and previous states. If it fails
to discriminate, then we do not have enough information
about the new state. Some models use sampling from a buffer
to measure the state novelty, which requires saving a large
number of previous states.

These methods of exploration are applied for the classic
reinforcement learning scenarios where the state represents
the position of the agent within some environment. However,
we aim to apply methods within the recommender systems
framework. Here, we can consider the state as the current
user-item interaction graph. Let us note that in such a defini-
tion the difference between consecutive states is represented
only by the addition of one or more links between the user
and items. Thus, we can consider the difference between
states as some measure over links. The Rooted PageRank
can be considered as a similarity measure between nodes
that estimate how popular some node is in the local region
of the root one. Moreover, temporal random walks give us
access to the several previous states of the graph because
each sampling step accounts only for edges drawn before.
Thus, the proposed method is the application of the existing
buffer-based exploration methods from RL to the graph-
based recommender systems with novel similarity function
and adaptation to the different state representation.

IV. EXPERIMENT SETTINGS
Basically, our goal is to evaluate how different exploration
strategies affect the performance of online model adaptation
to the new observations. In the next subsection, we describe
how we formulate a training and evaluation pipeline for this
task. Next, we explain the metrics. Finally, we present the
datasets.
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A. TRAINING AND VALIDATION
We split datasets into three parts:

1) Pretrain part. We use it to pretrain the TGN encoder
using a standard binary classification pipeline with
random negative sampling.

2) Validation for pretrain part. We use it to estimate
pretraining phase performance and apply an early-
stopping strategy to eliminate the over-fitting issue.

3) Online simulation part. We use it to run interactive rec-
ommender experiments following the logic described
in the subsection III-D

The balance between the parts is 50%−10%−40%. Such
balance was selected to save sufficient time horizon for an
online simulation experiment while preserving the ability to
pretrain the model.

On all parts, we sample batches in time order. The batch
size is set to 200, and hyperparameters for the TGN encoder
are set to default provided by the authors of [11].

B. METRICS
To estimate the quality of our models we calculate hit rate@k
(HR@k) for slated recommendations [50]. We use k equal
to 10 for both datasets. The hit rate shows whether our
recommendations were valid for a specific user at a specific
point of time. As described before, we de-bias all metrics
with replay and IPW procedures. We do not use any ranking
metrics because in our data we consider only binary feedback
for a single clicked element.

C. DATA

TABLE 1: Datasets statistics

MovieLens LastFM-1b
Number of observations 1000210 6799895
Number of users 6040 18437
Number of items 3706 9783
Average user degree 95 179
Average item degree 163 336
Positive label ratio 0.5752 0.4841

Our problem supposes the temporality of the data and
the existence of entity features, so we select the following
datasets.

Movielens-1m [51]. The dataset contains one million user
ratings for specific movies. Preprocessing consists only of
creating an item feature vector as the one-hot encoding of
genres. User features were represented by gender and age
group. This dataset is a commonly used benchmark for
recommender systems. Generally, it has rating event time, so,
we are able to train sequential models on them. However, the
temporal structure in this dataset is corrupted due to the logic
of the rating assignment. Users can rate items at a random
point in time, so the order of watches was not preserved.
To use a similar classification approach in all datasets we
transform labels to the binary scale. If the rating is less than
4, we suppose that film was not liked by the user, so it is

assigned with a zero label. Otherwise, we believe that ratings
4 and 5 represent the positive emotions of the user.

LastFM-1b [52]. The dataset contains one billion listening
events of different users. Due to the size of the dataset,
we consider the albums as items to reduce the prediction
space. Also, we do not consider the problem of repeated
consumption in the scope of this paper, so we remove the
user-item event repetitions saving only the first event. We
select a random subsample of users and remove inactive ones
to further reduce the size of the dataset. As an implicit label,
we take the indicator of whether the number of listen events
for a specific item is greater than 4 or not. The reason is two-
fold: repeated consumption means that the user possibly likes
this item and at the 4 repetitions we achieve the almost ideal
balance between targets in our subsample.

D. BASELINES FOR EXPLORATION
To evaluate our model we select two baselines. The first
two strategies allow us to understand whether complex ex-
ploration strategies advance model performance. VAE was
chosen as a method that is able to infer the distributions and
apply optimism under uncertainty logic. RND strategy also
follows the idea of the self-supervised novelty estimation that
is under our consideration.

Dot product. The basic scenario is to use only a dot
product over node embeddings after TGN encoding without
any extra exploration strategies. It shows the performance of
the modified TGN.

Epsilon-greedy [17]. Another straightforward strategy is
an ε-greedy. It recommends uniformly at random items with
probability equal to ε. Otherwise, it behaves similarly to the
dot product.

Variational Autoencoder (VAE). [15], [16] It implements
the ideas of optimism under uncertainty and is close to the
idea of Thompson Sampling. This strategy applies the VAE
to the TGN node embeddings. Two different networks (to
recover the mean and standard deviation of latent representa-
tions) compress the original node embeddings to the vectors
with lower dimensions (half of the original size). Then these
vectors are used to sample new latent vectors for nodes.
Finally, dot product encoding is applied to the latent node
embeddings. While training the reconstruction loss is also
propagated to train the VAE part.

Random Network Distillation (RND) [18]. We choose
this method as a common baseline for intrinsic motiva-
tion. The fully-connected network with randomly initialized
weights takes concatenation of TGN node embeddings as
input. The student network with similar architecture is used
to reconstruct predictions of the original random network.
The error between random and student networks is taken as
the measure of state novelty. The method use this novelty
estimate to bias the dot product encoder predictions.

V. EXPERIMENT RESULTS
In this section, we provide the results of the experiments and
analyze them. We present the Hit rate@k metric (the higher,
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the better, lies between 0 and 1). Bold text shows the best
quality and underlined shows the second-best option.

TABLE 2: Performance comparison of proposed explorer
with other baselines

MovieLens LastFM-1b
HR@10 HR@10

Dot 0.7226 0.4835
ε-greedy 0.7123 0.4767
VAE 0.6697 0.4149
SSL PageRank 0.7173 0.4809
SSL RND 0.6552 0.4695
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FIGURE 2: Dynamics of hit rate for over batches for
LastFM-1b

On both datasets, the dot-product (full exploitation) pre-
dictor outperforms the exploration strategies. However, the
self-supervised exploration with Rooted PageRank (SSL
PageRank) shows the best scores compared to other explo-
ration strategies. It means that penalizing for local item pop-
ularity could be enough for exploration purposes. PageRank
strategy aims to find locally non-popular points to create
a link. Such points are still close to the user but could be
slightly different in their representation. This scenario means
that after the network embedding procedure, the user vector
will be smoothly changed.

PageRank-based exploration does not introduce the ad-
ditional loss to the training objective in comparison to the
Random Network Distillation (SSL RND) and Variational
Autoencoder Approaches (VAE). SSL RND adds the MSE
loss to train the distilled network for exploration purposes.
However, the network takes the node representations from the
TGN encoder. So, this intrinsic loss has an effect on the initial
encoder weights and biases the model towards worse optima.
The logic for VAE is similar, in that it tries to reconstruct the
node embeddings encoded by TGN and also propagates the
reconstruction loss for it.

The ε-greedy strategy selects the item uniformly at random
when explores. However, due to the power-law nature of
recommender datasets, such a procedure leads to a high
probability of selecting the wrong item. So, it shows worse
performance in comparison with the default strategy. In our

method, short temporal random walks samples pretty close
items for the user. It helps to overcome the issue.

Figure 2 shows the dynamics of the HR@10 metric over
the batches. The figure is truncated to the first three thousand
batches to align plots for all exploration techniques. The
difference in the number of batches is induced by the replay
procedure which skips the part of samples. One can find that
after some point performance of the SSL PPR model starts
decreasing in contrast with other methods whose dynamics
are still positive. The main reason for that is the quality of
sampled temporal random walks. Before the graph becomes
too dense random walks hit the same item a lot. However, in
the dense graphs distribution of occurrences becomes close
to uniform. So, in this case, the model is unable to properly
estimate the local popularity of the item.

Experiment results show that graph-based exploration
methods efficiently adopt self-supervised intrinsic motivation
ideas from reinforcement learning and perform competitively
to other exploration strategies. The quality of the proposed
method becomes more substantial when nodes have a rela-
tively low degree and high diameter because it allows omit-
ting over-smoothing over the k-hop similarity.

VI. CONCLUSION
The paper provides a new exploration strategy: Rooted
PageRank for local popularity estimation. We apply it to
study the online adaptation of sequential recommender sys-
tem models.

Explained results show the importance of exploration tech-
niques for the online model adaptation. Models benefit from
different types of exploration if the temporal structure is
properly presented. The relative performance of exploration
methods depends on data properties. For the graphs with few
positive edges, the Rooted PageRank approach proves more
effective. In this case, it samples less diverse nodes and can
better estimate the local popularity.

Proposed strategy’s performance is competitive to the
other exploration strategies for recommender systems. In
the future, we aim to apply the proposed technique to the
repeated consumption scenarios. Further, we aim to study
proposed exploration strategies in more complex model
pipelines like multi-stage recommender systems. Also, it is
important to study the proposed technique for the heteroge-
neous graphs when items and users have different types.
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